Search results for "Banach space"
showing 10 items of 281 documents
Two-dimensional Banach spaces with polynomial numerical index zero
2009
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
2016
We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.
On singular integral and martingale transforms
2007
Linear equivalences of norms of vector-valued singular integral operators and vector-valued martingale transforms are studied. In particular, it is shown that the UMD(p)-constant of a Banach space X equals the norm of the real (or the imaginary) part of the Beurling-Ahlfors singular integral operator, acting on the X-valued L^p-space on the plane. Moreover, replacing equality by a linear equivalence, this is found to be the typical property of even multipliers. A corresponding result for odd multipliers and the Hilbert transform is given.
On the existence of at least a solution for functional integral equations via measure of noncompactness
2017
In this article, we use fixed-point methods and measure of noncompactness theory to focus on the problem of establishing the existence of at least a solution for the following functional integral equation ¶ \[u(t)=g(t,u(t))+\int_{0}^{t}G(t,s,u(s))\,ds,\quad t\in{[0,+\infty[},\] in the space of all bounded and continuous real functions on $\mathbb{R}_{+}$ , under suitable assumptions on $g$ and $G$ . Also, we establish an extension of Darbo’s fixed-point theorem and discuss some consequences.
Non-autonomous rough semilinear PDEs and the multiplicative Sewing Lemma
2021
We investigate existence, uniqueness and regularity for local solutions of rough parabolic equations with subcritical noise of the form $du_t- L_tu_tdt= N(u_t)dt + \sum_{i = 1}^dF_i(u_t)d\mathbf X^i_t$ where $(L_t)_{t\in[0,T]}$ is a time-dependent family of unbounded operators acting on some scale of Banach spaces, while $\mathbf X\equiv(X,\mathbb X)$ is a two-step (non-necessarily geometric) rough path of H\"older regularity $\gamma >1/3.$ Besides dealing with non-autonomous evolution equations, our results also allow for unbounded operations in the noise term (up to some critical loss of regularity depending on that of the rough path $\mathbf X$). As a technical tool, we introduce a versi…
A spectral mapping theorem for perturbed strongly continuous semigroups
1991
Examples of improjective operators
2000
It has been an open question for some time whether improjective operators are always inessential. Here we give some examples that answer in the negative this question as well as some other related ones, posed in [2, 3, 11, 12]. The description of the examples uses a indecomposable space, constructed by Gowers and Maurey [5], and a characterization of the indecomposable Banach spaces in terms of improjective operators.
Examples of Indexed PIP-Spaces
2009
This chapter is devoted to a detailed analysis of various concrete examples of pip-spaces. We will explore sequence spaces, spaces of measurable functions, and spaces of analytic functions. Some cases have already been presented in Chapters 1 and 2. We will of course not repeat these discussions, except very briefly. In addition, various functional spaces are of great interest in signal processing (amalgam spaces, modulation spaces, Besov spaces, coorbit spaces). These will be studied systematically in a separate chapter (Chapter 8).
Lipschitz-type conditions on homogeneous Banach spaces of analytic functions
2017
Abstract In this paper we deal with Banach spaces of analytic functions X defined on the unit disk satisfying that R t f ∈ X for any t > 0 and f ∈ X , where R t f ( z ) = f ( e i t z ) . We study the space of functions in X such that ‖ P r ( D f ) ‖ X = O ( ω ( 1 − r ) 1 − r ) , r → 1 − where D f ( z ) = ∑ n = 0 ∞ ( n + 1 ) a n z n and ω is a continuous and non-decreasing weight satisfying certain mild assumptions. The space under consideration is shown to coincide with the subspace of functions in X satisfying any of the following conditions: (a) ‖ R t f − f ‖ X = O ( ω ( t ) ) , (b) ‖ P r f − f ‖ X = O ( ω ( 1 − r ) ) , (c) ‖ Δ n f ‖ X = O ( ω ( 2 − n ) ) , or (d) ‖ f − s n f ‖ X = O ( ω …
Norm or numerical radius attaining polynomials on C(K)
2004
Abstract Let C(K, C ) be the Banach space of all complex-valued continuous functions on a compact Hausdorff space K. We study when the following statement holds: every norm attaining n-homogeneous complex polynomial on C(K, C ) attains its norm at extreme points. We prove that this property is true whenever K is a compact Hausdorff space of dimension less than or equal to one. In the case of a compact metric space a characterization is obtained. As a consequence we show that, for a scattered compact Hausdorff space K, every continuous n-homogeneous complex polynomial on C(K, C ) can be approximated by norm attaining ones at extreme points and also that the set of all extreme points of the u…